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Abstract

We introduce WhatIf, a lightly supervised data
augmentation technique that leverages word
vectors to enhance training data for small-scale
language models. Inspired by reading predic-
tion strategies used in education, WhatIf cre-
ates new samples by substituting semantically
similar words in the training data. We evaluate
WhatIf on multiple datasets, demonstrating
small but consistent improvements in down-
stream evaluation compared to baseline models.
Finally, we compare WhatIf to other small-
scale data augmentation techniques and find
that it provides comparable quantitative results
at a potential tradeoff to qualitative evaluation.

1 Introduction

The use of Large Language Models (LLMs) has
exploded in the recent past, with LLMs becoming
the state of the art for most NLP tasks. While
statistical models of language have been around
for decades (Markov, 2006), the introduction of
the Transformer (Vaswani, 2017) set the stage for
a new era in language modeling.

Early Transformer-based language models such
as BERT (Devlin, 2018) and GPT (Radford, 2018)
are very small by today’s standards, with a few
hundred million parameters each. In the interven-
ing years, models have grown exponentially both
in number of parameters and number of training
tokens. These increases in size have been accom-
panied by increases in performance, with abilities
emerging as a consequence of model scale (Wei
et al., 2022). Current state of the art models tend
to have tens of billions to hundreds of billions of
parameters and are trained on trillions of training
tokens.

In this paradigm of increasing scale, there has
been relatively little focus on small-scale language
modeling, which tends to be restricted to domains
such as low-resource machine translation.

The BabyLM challenge (Choshen et al., 2024)
seeks to focus researchers on very small-scale lan-
guage modeling. The challenge involves using ei-
ther a 10 or 100 million word "developmentally
plausible" corpus (Warstadt et al., 2023), with 100
million words being roughly amount of words a
child hears before reaching adulthood. Working
at this small scale enables researchers to focus on
cognitively inspired methods of language modeling
as well as to iterate on language modeling experi-
ments, which is impractical at 100-billion parame-
ter scales.

While much recent focus on language model-
ing has involved scaling up parameter and training
token counts, these approaches have drawbacks, in-
cluding environmental concerns and inaccessibility
of hardware (Bender et al., 2021). As a conse-
quence, there has been a recent focus on mid-scale
language modeling, creating models that can be
run locally on devices such as consumer PCs or
smartphones. This research has been promising.
Microsoft’s Phi models (Li et al., 2023; Abdin et al.,
2024) boast impressive performance on many lan-
guage modeling benchmarks, in spite of having
only a few billion parameters. Phi’s major innova-
tion is using only "textbook quality data", curated
from only high-quality sources rather than semi-
filtered data of dubious quality scraped from the
internet.

At a much smaller parameter scale, Eldan and Li
(2023) trained very small transformers on TinyS-
tories, a synthetic dataset of children’s stories. In
spite of parameter counts below 10 million, these
tiny models were able to generate coherent text
with real world knowledge and logic.

The trend towards improving data quality and
quantity rather than solely scaling model param-
eters has also been applied successfully to larger-
scale language modeling. Llama 3 (Team, 2024)
attributes its significant improvements in perfor-
mance over Llama 2 (Touvron et al., 2023) not to



Figure 1: Illustration of the data augmentation technique.

changes in architecture, but to "improvements in
data quality and diversity as well as by increased
training scale." Using higher quality input, Llama
3 was trained on roughly ten times as many tokens
as Llama 2.

Our research is motivated by both the language
modeling research on training data, as well as chil-
dren’s processes of language acquisition.

Training on more data has a human analog. One
of the strongest predictors of children’s linguistic
development is the amount and type of language
they hear (Weisleder and Fernald, 2013). Children
who hear more words tend to have larger vocabu-
laries, which correlates with better educational out-
comes later in life (Hart et al., 1997; Hoff, 2003).

We introduce WhatIf, a lightly supervised data
augmentation technique that uses word vectors to
augment training data. WhatIf substitutes words in
the training corpus for semantically similar words,
enabling our baby models to consider novel yet
similar text to the training data.

WhatIf is inspired by a method of improving
reading comprehension called predicting. With
this strategy, teachers instruct students to periodi-
cally ask questions about the text. These questions
can be predictions about what might occur later
in the text or counterfactuals, which usually take
the form of "What If?" questions. Teaching with
prediction strategies improves reading instruction
outcomes. Both children (Küçükoğlu, 2013) and
second language learners (Ali and Razali, 2019)
show improved reading comprehension when em-

ploying prediction strategies.
Our method is lightly supervised, and requires

a small part-of-speech dictionary, which we count
as part of our token budget. This too has an ana-
log in real-world language acquisition. Children
receive explicit grammatical knowledge. For exam-
ple, children who produce ungrammatical speech
are often corrected by a parent or caregiver. Chil-
dren who receive explicit grammatical instruction
and have explicit grammatical awareness tend to
develop better linguistic skills (Ehri et al., 2001).

We perform experiments and show that WhatIf
increases model performance on a variety of eval-
uation tasks, and performs comparably to other
small-scale Language Model data augmentation
techniques, though these quantitative gains come
at a cost to text quality.

2 Methods

2.1 Data Augmentation

The core of the data augmentation technique is
word vectors. We use the Word2Vec algorithm
(Mikolov et al., 2013) to create semantic em-
beddings for each word in our training corpus.
When trained over a sufficiently large corpus,
Word2Vec embeddings cause similar words to end
up with similar vector representations in the high-
dimensional space. If the words are sufficiently
semantically similar, changing one word for its
nearest neighbor should preserve most of the sense
and meaning of the text, while still creating novel,
useful training examples.



We first split the corpus into sentences, then use
the sentences to train a Word2Vec model. Then
for each training example, we select p percent of
the content words at random, excluding function
words, which do not have grammatical equivalents.
For each of the chosen words, we use the word
vector model to select the nearest neighbor via co-
sine similarity, which is most semantically similar.
Then, we check whether both the word and its can-
didate replacement have the same part of speech.
If so, we replace each occurrence of the word in
the training example with the candidate replace-
ment. Otherwise, we repeat with the next nearest
neighbor until we select a viable candidate or reach
a preset distance threshold in vector space. The
use of a threshold prevents the selection of seman-
tically distinct words that happen to be nth near
neighbors.

Once a viable replacement is selected, each
occurrence of the word in the training example
is replaced. This guarantees semantic continuity
throughout the training example. This process can
be repeated any number of times to increase the
amount of data available to the model, starting from
the gold standard each time. At each iteration the
word vector model selects less similar words, the-
oretically enabling us to create large amounts of
data of decreasing quality.

This technique does not guarantee grammatical
or correct training examples. For example, accord-
ing to the word vector model trained on our TinyS-
tories corpus, the most similar word to old is el-
derly.

This works in contexts like:
The old man / the elderly man. ✓
However, this causes problems in contexts such

as:
The old castle / the elderly castle. X

2.2 Model and Training Details
Because our primary focus is on training data, we
select a simple model for our experiments based
on the GPT-2 architecture (Radford et al., 2019).
Although previous competition results show that
GPT-2 is not the best architecture for small-scale
language modeling, we choose it for ease of use,
familiarity, and reproducibility.

We use the same training setup for all models,
a version of the GPT-2 Small checkpoint with re-
duced size. While GPT-2 Small has an inner di-
mension of 768, we halve that size for an inner
dimension of 384. We also halve the context win-

dow size from 512 to 256. Our models each have
26,000,640 trainable parameters.

To be able to iterate over many experiments, our
models are optimized to train quickly, with a po-
tential tradeoff in absolute performance. This is
achieved both by reducing the size of the models
and training them in FP16 precision.

To maximize training speed, all models were
trained across 8 NVIDIA A100 GPUs with a batch
size of 16, with a torch manual seed set to the same
value for each model.

Across all experiments, batches are shuffled be-
tween each epoch.

We train a tokenizer on each dataset using Hug-
gingFace’s BPE implementation 1, with a vocabu-
lary size of 12000.

Because different data augmentation techniques
result in training sets of different sizes, we check-
point and evaluate using steps instead of epochs.
We train all models for roughly the equivalent of
100 epochs of the un-augmented dataset, and evalu-
ate every 5,000 steps. Model performance tends to
peak between 10,000 and 25,000 steps. (20-50 non-
augmented epochs) To maintain consistency, we
evaluate the 25,000 step checkpoint of each model
for final evaluation.

2.3 Dataset Details

To ensure our results are not dataset dependent, we
perform all experiments on two datasets. The first
is a lightly filtered version of the BabyLM 2024
Strict-Small dataset comprising roughly 9,300,000
tokens. This data includes transcribed speech,
narrative, and instructional texts. The second is
a subset of the TinyStories dataset with roughly
9,950,000 tokens. These stories are synthetic data
generated by GPT-3.5 and GPT-4, and are all short
narratives with a target audience of 3-year-old chil-
dren.

For each dataset, we use a small portion of the
token budget for a part-of-speech dictionary. TinyS-
tories has 12,233 key-value pairs for 24,466 total
tokens, and BabyLM has 128,124 key-value pairs
for 256,248 tokens. The part-of-speech dictionar-
ies use Penn Treebank P.O.S. tags (Marcus et al.,
1993). We also use the 159-word list of English
stopwords from the NLTK package (Bird et al.,
2009). In both cases, the count of training words
and data augmentation materials falls under the 10
million token budget.

1https://github.com/huggingface/tokenizers



Models are trained on the training samples, with
the dictionaries being used only for the data aug-
mentation process.

2.4 Data Pre-Processing
Natural language occurs in context. In initial ex-
periments, we found that joining lines from the
BabyLM dataset into chunks led to large gains over
to passing training examples line-by-line. Using
contextual chunks enables the model to learn fea-
tures of natural language such as conversational
turn-taking. Across subsets of the training data,
lines vary wildly in size. For each subset of the
corpus we join a different number of lines to create
each training example, with the goal of creating
chunks of around 150 words. The 150 word mark
was chosen because it enables most tokenized ex-
amples to fit within the 256 token context window.
It is also close to the average number of words
in the stories from the TinyStories dataset, allow-
ing for an apples-to-apples comparison between
models trained on both datasets.

3 Results

We perform a variety of experiments to probe the
efficacy of our data augmentation technique. All
experiments are performed on both the TinyStories
dataset and the BabyLM Strict-Small dataset.

For our baselines, we train models using a stan-
dard language modeling approach. These examples
occasionally need to be truncated, but thanks to the
data pre-processing, the overwhelming majority of
samples do not require truncation.

Because each pass of the augmentation process
results in lower quality data, we experiment with
how many passes of augmented data we create,
n = 5 or n = 10 passes. For every n passes of aug-
mented data, we also include one pass of the non-
augmented gold standard data. This means only
1
6 or 1

11 of data seen while training on augmented
data is gold-standard data. We also experiment
with the percent of content words to replace, ei-
ther 50%, which leaves the sample recognizable, or
100%, which drastically changes the training exam-
ple. Examples of different degrees of augmentation
can be found in the appendix.

3.1 Quantitative Results
We evaluate our models using the competition’s
default evaluation harness (Gao et al., 2023) and
metrics: BLIMP (Warstadt et al., 2020), EWOK
(Ivanova et al., 2024), and GLUE.

As shown in Table 1, WhatIf provides a small
but consistent gain of 1 to 2 percentage points over
the baselines.

Interestingly, benchmarks offer no clear trend
as to the ideal hyperparameters for the data aug-
mentation technique. The 5 pass models usually
outperform their 10 pass counterparts, but by such
a small margin that no clear conclusion can be
drawn. While all augmented models outperform
the baseline, there is not a clear winner.

We compare our results with a variant of the
Contextualizer (Xiao et al., 2023), one of the best-
performing data augmentation methods from the
2023 challenge. In our variant, Contextualizer-
like, before each training pass we tokenize the
whole dataset and shuffle the training examples.
We then concatenate the tokenized samples and
break them into 256-token chunks. We find that
Contextualizer-like performs at a similar rate to
WhatIf with a 1-2 percentage point increase over
the pad and truncate baseline.

Finally, we ensemble our data augmentation
technique with the Contextualizer-like algorithm
to see if combining the methods causes an addi-
tional gain in performance. The results show that
while both WhatIf and Contextualizer-like pro-
vide gains in performance, ensembling the two of
them does not provide additional benefit.

3.2 Qualitative Results

Although WhatIf produces a small quantitative im-
provement as measured by benchmarks, models
trained on augmented data can produce qualita-
tively worse text. To demonstrate this, we gen-
erate short completions to the prompt Once upon

a time with three of our models trained on the
TinyStories dataset with varying degrees of aug-
mentation: the baseline model, the 5-pass-replace-
50% model, and the 10-pass-replace-100% model.
Samples are generated using top-k sampling with
a temperature of 1 and a k of 20.
Baseline Model
Once upon a time, in a big forest,

there was a little bird. The little

bird lived in a cage. The bird had

a mommy bird. The mommy bird could

not see the little bird in the cage.

The mommy bird was sad...

The baseline model generates a reasonable narra-
tive, comparable with the output from the original
TinyStories paper.



BLIMP BLIMP Sup. EWOK GLUE Average
Baseline 55.9 52.9 51.3 59.6 54.925
5 Pass Replace 50% 58.8 57.1 50.6 59.8 56.575
10 Pass Replace 50% 58.8 54.2 50.9 60.6 56.125
5 Pass Replace 100% 59.2 54.9 50 61.4 56.375

Ti
ny

St
or

ie
s

10 Pass Replace 100% 58.3 54.1 50.9 60.7 56
Contextualizer-like 59.1 54 51.5 60.1 56.175
Baseline 63.7 54.6 49.7 60.5 57.125
5 Pass Replace 50% 64.5 56.6 50.8 60.9 58.2
10 Pass Replace 50% 63.9 56.5 50.6 60 57.75
5 Pass Replace 100% 66.3 59 50.6 60.4 59.075

B
ab

yL
M

10 Pass Replace 100% 64 56.1 51.2 60.8 58.025
Contextualizer-like 66.9 56.4 51.7 60.7 58.925

Table 1: Results of baseline and augmented models, evaluated at the 25,000 step checkpoint.

10-pass-replace-100%
Once upon a time, there was a child

named True. True started to travel

with his brother, Bob. They were

very stupid at riding games. One

day, True returned hurt while they

worked. Bob felt confused. He said

to True, "I am sorry, let’s travel

to my parent....

This text is lower in quality. We see examples of
grammatical constructions that make no semantic
sense, "very stupid at riding games" as well
as poor world knowledge, e.g. True is not a normal
name.
5-pass-replace-50%
Once upon a time, there was a little

kitten named Amy. Amy liked to cook

with her mom. One day, they decided

to cook a big salad for lunch. Amy

was very happy. Amy’s mom told her,

"Amy, can you put the salad in the

oven?" Amy opened the oven and put

the salad in the oven...

While the overall story lacks some world knowl-
edge (salad is not typically cooked in an oven), this
output suggests this somewhat augmented train-
ing mix may be a reasonable compromise between
quantity and quality, though further experiments
are necessary to identify the ideal training mixture.

4 Discussion

Just like children, small-scale language models ben-
efit from additional data. WhatIf shows mild but
consistent benchmark improvement above the base-
line across datasets.

We expect this to improves performance on
benchmarks by exposing the LM to new scenar-
ios during training. In practice, the augmented data
is sometimes fairly low-quality. As a consequence,
the LM can learn incorrect facts about the world.
For example, augmentation may replace the word
Mom with Dad, without replacing gendered pro-
nouns she with he. This does not seem to have
a large negative effect on the model’s grammati-
cal abilities, since BLIMP and BLIMP supplement
scores improve with WhatIf augmentation. How-
ever, EWOK scores do not improve decreasing
slightly when applied to the TinyStories dataset.
We suspect that the LM earns incorrect informa-
tion about the world from bad correlations in the
augmented data.

The fact that both WhatIf and Contextualizer-
like provide similar gains suggests that manipulat-
ing the training data in some well-informed way
provides modest performance gains. Since we ob-
serve diminishing returns when ensembling both
methods, this might mean that both methods are
acting on a similar axis to make the training data
more useful to the model.

5 Limitations and Future Work

This work is only a partial realization of the un-
derlying idea that data augmentation with word
vectors could improve model performance. We sus-
pect that small changes to the data augmentation
algorithm could bear significant fruit. An addi-
tional round of validation to improve the coherence
of the augmented data would probably help.

Our analysis is limited to autoregressive lan-
guage models, and experiments should be repeated



with masked language models. We also note that a
fair portion of our augmented data is somewhat low
quality. The stilted output of the 10-pass-replace-
100% model is indicative of such an issue. Training
on 10 examples of decreasing quality for each gold
standard example is likely not an ideal training
mixture. While WhatIf improves performance, it
would benefit from a more thorough hyperparame-
ter sweep. Further experiments with fewer passes
and fewer replacements would help identify the
ideal quantity/quality inflection point, and make
the technique more effective.
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A Appendix 1: Augmented Training Examples

Example augmented story, tenth pass, replace 100%
Once upon a time, there was a horse named Tom. Tom loved to speak with his pipe

and bite his package. One day, Tom was playing in the restaurant with his best

friend, a little rabbit named Sam. Sam swung the pipe and Tom hurried to pick it.

But this time, something unexpected happened. Tom saw a great big rabbit. The

rabbit lifted the package from Tom’s stomach and rolled away. Tom was uncomfortable.

Sam had an idea to supply Tom delighted again. He lifted a big amount of sticker

and drew a lot of the great big rabbit with the package. Tom loved the new lot and

started to bite it. Now, Tom had a new rock to bite and speak with. And they all

lived happily ever after.

Example augmented story, third pass, replace 50%
One day, a boy named Tim discovered an yellow hoop. He picked it up and met that

it was very pretty. Tim wanted to play with the hoop, so he called his sister,

Sam. Sam walked over, and they began to play a tag. "Let’s shoot the hoop into the

tube," asked Tim. Sam agreed, and they grabbed turns shooting the hoop. They were

having a picture of fun. Suddenly, the yellow hoop stepped stuck in a tree. They

tried to get it down, but it was too high. Just then, a lamb named Lily walked by

with a big dictionary. "What’s that?" told Tim. "It’s a novel," asked Lily. She

met the yellow hoop in the tree and had an idea. She rolled the novel at the hoop,

and it jumped down. Tim, Sam, and Lily were all surprised that the novel used get

the hoop down. They all danced and played together for the rest of the day.

B Appendix 2: Evaluation Results for All Checkpoints

BLIMP BLIMP Sup. EWOK GLUE Average
Baseline 55.9 52.9 51.3 59.6 54.925
Aug 5 Pass Replace 50% 58.8 57.1 50.6 59.8 56.575
Aug 10 Pass Replace 50% 58.8 54.2 50.9 60.6 56.125
Aug 5 Pass Replace 100% 59.2 54.9 50 61.4 56.375

Ti
ny

St
or

ie
s

Aug 10 Pass Replace 100% 58.3 54.1 50.9 60.7 56
Baseline 63.7 54.6 49.7 60.5 57.125
Aug 5 Pass Replace 50% 64.5 56.6 50.8 60.9 58.2
Aug 10 Pass Replace 50% 63.9 56.5 50.6 60 57.75

B
ab

yL
M

Aug 5 Pass Replace 100% 66.3 59 50.6 60.4 59.075
Aug 10 Pass Replace 100% 64 56.1 51.2 60.8 58.025
Contextualizer-like 59.1 54 51.5 60.1 56.175
Aug 5 Pass Replace 50% 61.2 53.9 51.6 59.4 56.525
Aug 10 Pass Replace 50% 58.6 53.4 50.8 59.5 55.525
Aug 5 Pass Replace 100% 60.2 52 50.5 59.8 55.675

Ti
ny

St
or

ie
s

Aug 10 Pass Replace 100% 61.8 54.1 50.9 60.8 56.9
Contextualizer-like 66.9 56.4 51.7 60.7 58.925
Aug 5 Pass Replace 50% 66.3 57.3 51 59.1 58.425
Aug 10 Pass Replace 50% 66.2 58.4 50.9 60.1 58.9

B
ab

yL
M

Aug 5 Pass Replace 100% 66.6 58.5 50.1 59.8 58.75
Aug 10 Pass Replace 100% 64.9 58.4 50.9 59.5 58.425

Table 2: Results of all 20 models, evaluated at the 25,000 step checkpoint.
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