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Abstract: Generative AI has the potential to revolutionize social science research. How-
ever, researchers face the difficult challenge of choosing a specific AI model, often with-
out social science-specific guidance. To demonstrate the importance of this choice, we
present an evaluation of the effect of alignment, or human-driven modification, on the
ability of large language models (LLMs) to simulate the attitudes of human populations
(sometimes called silicon sampling). We benchmark aligned and unaligned versions of
six open-source LLMs against each other and compare them to similar responses by hu-
mans. Our results suggest that model alignment impacts output in predictable ways, with
implications for prompting, task completion, and the substantive content of LLM-based
results. We conclude that researchers must be aware of the complex ways in which model
training affects their research and carefully consider model choice for each project. We
discuss future steps to improve how social scientists work with generative AI tools.
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Introduction

Large Language Models (LLMs) such as ChatGPT (OpenAI, 2023), Gemini (Google, 2024),

Claude (Anthropic, 2024), and Llama (AI@Meta, 2024) have quickly transformed the land-

scape of work in tech, education, research, communications, and more, seemingly leaving

no industry untouched. LLM tools are being integrated into a range of daily use tools,

such as online searches, computer programming, word processing, and customer service

interactions, where both expert professionals and lay users regularly interact with them.

In this AI moment, it is hard to overstate the impact of LLMs across the social, political,

economic, and educative landscape.

In the realm of social science research, scholars have proposed a variety of applications

for LLMs, which span the full scope of the research pipeline, including: search, summary,

and synthesis of existing literature (Elicit, 2024; Copilot, 2024; Consensus, 2024); text clas-

sification and coding (Gilardi, Alizadeh and Kubli, 2023); interaction with human subjects

to administer experimental stimuli or surveys (Argyle et al., 2023b; Velez and Liu, 2024);

silicon simulation of human attitudes and behaviors (Argyle et al., 2023a; Horton, 2023;

Hewitt et al., 2024; Kozlowski, Kwon and Evans, 2024; Aher, Arriaga and Kalai, 2023);

and much more (Bail, 2024; Demszky et al., 2023). Each of these applications raises both

normative concerns about the meaning of the scientific process and the value of outsourc-

ing key creative tasks to an automated non-human system, and empirical questions about

the capability of LLMs to satisfactorily conduct these tasks. However, systematic evalu-

ation of these concerns is hampered by the rapid updating and proliferation of LLMs,

and by the reality that different LLMs – trained on different data with different model

architecture and different alignment processes – often perform the same tasks in radi-

cally different ways. How, then, should researchers choose a generative AI tool for their

specific applications?

There is no one, universal answer to this question. However, we suggest there are
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clear processes that researchers can follow to identify a model that will work for their

particular use case and specific goals. To illustrate this process, we explore the impact

of one key distinction between models that is often overlooked by social scientists: the

degree to which LLMs have been aligned – or modified through explicit human guidance

– towards more desirable, functional, or socially positive behavior.

In this evaluation, we focus specifically on the impact of alignment on the capacity

of LLMs to simulate human responses in a social science research context. However,

we believe the discussion we provide on the interplay between LLMs – including model

training dynamics, prompts, training data, and alignment process – and the various goals

of research-oriented simulation, apply to the use of AI for a range of common social sci-

ence tasks beyond simulation, including text classification, hypothesis generation, and

summary or synthesis of current research.

After describing the use of LLMs for silicon sampling research and introducing model

architecture and alignment considerations, we propose a set of expectations for how

model alignment will impact silicon sampling. We expect the three general goals of align-

ment – pushing models to be helpful, honest, and harmless – to lead to predictable dif-

ferences in model behavior. We then present both a benchmarking exercise (Study 1) and

a replication and extension of foundational silicon sampling work (Study 2) to highlight

some ways model alignment impacts a researcher’s ability to accomplish various research

goals.

Our results suggest that model alignment impacts how models follow instructions,

complete the task, and the content of the output in systematic and predictable ways. In

light of this, researchers should pay careful attention to model alignment when selecting

a model for research tasks. We find that neither aligned nor unaligned models are univer-

sally better for silicon sampling, but rather that researchers need to be aware of the range

of complex and nuanced ways in which model training affects their research output and

carefully choose a model to reach their specific research goals. In the two studies pre-
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sented in this paper, we present a relatively simple process of benchmarking and testing

that can be employed by researchers to systematically explore the effects of model differ-

ences, like alignment, on their particular research goals. We conclude with a discussion

of key principles resulting from these studies to help guide social science model choice,

and with suggestions for future research in this area.

LLMs in Social Science Research

Language models are trained in a series of stages, each with different goals, and each of

which results in a model with different properties. These stages and their differences will

be discussed in detail in the next section, but ultimately, developers of large language

models like ChatGPT, Claude, Gemini, LLama, Gemma (Team, 2024), Mistral (Jiang et al.,

2023) and others generally strive to make models helpful, honest, and harmless (Askell et al.,

2021).

Importantly, the meaning of these goals depends on the task for which an LLM is used.

For example, in the context of information retrieval or conversation with human counter-

parts, models are most helpful and do the least harm when they are free as much as possible

from algorithmic bias and the misinformed, prejudiced, or toxic information/speech that

results from it (Bender et al., 2021; Caliskan, Bryson and Narayanan, 2017; Kleinberg et al.,

2018; Obermeyer et al., 2019). While such bias naturally emerges from training these mod-

els on biased, misinformed, and prejudiced human text, scholars rightly fear that LLMs

that reflect these biases can perpetuate them at an unprecedented scale, causing signifi-

cant social harm (Goldstein and Sastry, 2023; Cheng, Durmus and Jurafsky, 2023; Panch,

Mattie and Atun, 2019).

However, social science researchers, particularly in sociology, psychology, and politi-

cal science, often seek to use LLMs for very different tasks – tasks that require the models

to accurately reflect the thoughts and attitudes of their human counterparts. For these

social scientists, accurate reflection of the biased, misinformed, and prejudiced thought
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processes of various human groups is helpful – it enables what Argyle et al. (2023a) call

algorithmic fidelity; the alignment of these models thus has the potential to be harmful,

or in tension with researchers’ goals. Argyle et al. (2023a) define algorithmic fidelity as

"the degree to which the complex patterns of relationships between ideas, attitudes, and

socio-cultural contexts within a model accurately mirror those within a range of human

sub-populations," and show how high algorithmic fidelity ”enables researchers to extract

information from a single language model that provides insight into the different patterns

of attitudes and ideas present across many groups (women, men, white people, people

of color, millennials, baby boomers, etc.) and also the combination and intersection of these

groups (black immigrants, female Republicans, white males, etc.)."

In particular, silicon sampling, or the use of LLMs to generate and then study in-silico

representations of human populations, relies entirely on high LLM algorithmic fidelity.

Since early work in this space (Argyle et al., 2023a; Horton, 2023; Dillion et al., 2023),

hundreds of projects across a variety of disciplines have introduced innovations to and

relied upon this approach (Ziems et al., 2024; Pachot and Petit, 2024). This recent research

has raised as many questions as it has hopes for the viability of using LLMs to simulate

human subjects. Some raise concerns about the ability of these models to reliably simu-

late human subjects across a variety of important demographic subgroups, highlighting

issues related to algorithmic bias, model steerability, and so forth (Bisbee et al., 2024; San-

turkar et al., 2023; Boelaert et al., 2024; Cheng, Durmus and Jurafsky, 2023; Qu and Wang,

2024). Others, including a number of prominent computational sociologists, find much

more promising results. For example, in a project using GPT-4, Hewitt et al. (2024) find

representative silicon samples are capable of closely replicating (r = 0.85) human results

from 476 experimental treatments. In a an experiment designed to test the ability of LLMs

to predict COVID-19 attitudes, Kozlowski, Kwon and Evans (2024) find that their "sim-

ulated respondents reproduce[d] observed partisan differences in COVID-19 attitudes in

84% of cases, significantly greater than chance." Lee et al. (2024) find similar results, with
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some caveats, in their attempt to use silicon subjects to predict climate change attitudes.

In an important recent innovation, Kim and Lee (2024) show how fine tuning silicon sam-

ples on human survey responses greatly improves both retrodiction and missing survey

response predictions. None of the preceding authors argue that LLMs can or should re-

place human participants, but their work suggests LLMs can successfully simulate hu-

man attitudes in various contexts, with certain caveats. If accurate, silicon simulation has

the potential to augment shortcomings of human subject sampling and recruitment to

improve social science research inference.

Why do some researchers in this area successfully use LLMs to simulate human at-

titudes and beliefs while others do not? We believe a variety of factors come into play,

including choice of model family, model size, prompting approaches, training data, and

differences in expectations or benchmarking tests. Here we argue that, in addition to these

differences, an important portion of the explanation lies in understanding differences in

model architecture and alignment values and goals. In the following section, we explain

why we believe these factors, which have seen relatively little academic discussion, drive

differences in outcomes.

The Potential Effects of Training and Alignment on Algorithmic Fidelity

Having proposed that goals of being harmless, honest and helpful are context dependent

and sometimes in tension, we now turn to a discussion of the technical details of LLM

training. Language models are generally trained in two stages: the "pre-training" phase

and the "alignment" phase. Each has distinct goals, and results in models with distinct

properties, as we now discuss. Throughout this paper, we will refer to models that have

been pre-trained, but not aligned, as "base models." We reference models that have been

both pre-trained and aligned as "aligned models."
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The Pre-Training Phase

Modern generative language models have billions of parameters; as a result, they must

be trained on huge corpora of natural language text. During the pre-training phase, mod-

els are trained on trillions of tokens of natural language, with the explicit goal of accu-

rately modeling the distribution of the data (mathematically expressed as maximizing its

log-likelihood). This data usually comes from human-generated text scraped from the

internet, but because of the vast quantities needed, it is usually only lightly curated.

Pre-training a language model of sufficient size endows it with many natural lan-

guage processing abilities, such as translation, summarization, and question answering

(Radford et al., 2019). These base models also show some emergent abilities to perform

tasks that they were not explicitly trained to do (Wei et al., 2022); taken together, many of

these abilities are sufficient to perform various social science tasks of interest.

Despite their many desirable abilities, base models do indeed accurately reflect the

statistics of their training data, for better and for worse (in machine learning parlance,

the models are well calibrated 1 (OpenAI et al., 2024)). Because online text (and therefore,

training data) often contains bias, violent rhetoric, false information, and hate speech,

naively mimicking the statistics of this text is unacceptably dangerous for most use cases,

which motivates a second stage of training.

The Alignment Phase

After pre-training, base models often go through a second training phase supervised by

humans. In contrast to pre-training, where the goal is to accurately model the distribution

of data, this training represents a conscious effort to change model behavior. Alignment

1If a well-calibrated model reports 70% confidence about something, it should be cor-

rect 70% of the time; if it reports 20% confidence, it should be correct 20% of the time,

etc.
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pipelines can be quite elaborate, and involve highly curated datasets that are carefully

sequenced to enhance specific capabilities of a language model and reduce undesirable

behaviors. For example, in the Llama 3.1 alignment phase, specific data mixtures were

used to help enhance factuality, steerability, multilinguality, tool use, long contexts, math

and reasoning, and programming ability (Dubey et al., 2024).

From an algorithmic standpoint, model alignment can take a variety of forms, with

the most common methods being Instruction Tuning (Zhang et al., 2024), Direct Prefer-

ence Optimization (DPO) (Rafailov et al., 2023), and Reinforcement Learning from Hu-

man Feedback (RLHF) (Bai et al., 2022). Instruction Tuning is a type of supervised fine

tuning (SFT) that consists of fine-tuning a pre-trained language model on many examples

of instruction-response pairs. This teaches the language model to both pay attention to

prompts and to follow instructions contained therein. This instruction-following ability

creates a significant difference between a base model and an aligned counterpart in this

area, and is generally considered helpful in virtually any context.

The primary method for curbing inappropriate model responses is refusal training.

This is done by including refusals in the instruction tuning data, where a user asks an

unsafe or offensive query and the expected reply is a refusal to comply. In contrast to

general instruction tuning, refusal training can cause a language model to refuse to follow

instructions, or devolve into moral lectures about whether or not a topic is acceptable.

While instruction tuning provides specific examples of correct behavior, RLHF and

DPO operate on a different principle. Both RLHF and DPO are typically run after instruc-

tion tuning. In both, the tuned model is given a query and asked to generate multiple

responses. An external evaluator (usually a human) then scores which output is preferred

and passes this feedback to the model, which learns from the evaluation. This indirectly

imbues models with human preference data, skewing the model towards the values and

goals of the human evaluators.
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Quantitative Effects of Alignment on Model Behavior

Alignment has many consequences, both intentional and unintentional, on model perfor-

mance. As these consequences have seen little discussion as of yet in social science, we

briefly review some insights from research from computer science. As computer scientists

are typically less concerned about silicon sampling, we discuss how these insights might

impact social science research, and particularly research based on silicon sampling.

Calibration: First, alignment dramatically reduces calibration (OpenAI et al., 2024),

meaning that the distribution of outputs generated by an aligned model no longer match

the distribution of the training data, though this effect diminishes for models with larger

parameter scales (Zhu et al., 2023). This means that the probability assigned to any next

token is less inherently meaningful as models undergo more alignment.

Consistency: Alignment also affects a model’s consistency (how often it gives the

same general answers to the same questions). Aligned language models are less consis-

tent than unaligned models, a difference exacerbated when discussing controversial or

sensitive topics (Moore, Deshpande and Yang, 2024). One demonstration of this inconsis-

tency for aligned models can be found in the robust literature on "jailbreaking" models,

where small changes to a prompt can be sufficient to bypass guardrails that alignment

intends to establish (Arditi et al., 2024; Wei, Haghtalab and Steinhardt, 2024; Chu et al.,

2024; Xu et al., 2024). This can lead language models to give responses that are inconsis-

tent in tone or content across slightly different prompts, for example refusing a response

in some cases and answering in others, even when the substance of the request is quite

similar.

Variability: Multiple studies find that alignment also decreases variability in language

model outputs. LLM outputs are the result of a stochastic draw from a distribution of

probable next tokens, which means that providing the same prompt multiple times can

result in a range of different outputs. The variability in responses to a single prompt is

expected to be lower for an aligned model than an unaligned model. RLHF may help
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models generalize to new inputs better than SFT, though RLHF causes a significant drop

in output diversity (Kirk et al., 2024). This apparent drop in diversity of outputs may be

an artifact of a different process that comes from alignment. Aligned models tend to ag-

gregate useful information and generate more relevant text. While the resulting responses

are less diverse, they include more relevant information (Lake, Choi and Durrett, 2024).

Steerability: A key property of language models for social scientists is steerability,

or the degree to which a model is willing to simulate a specific person or take on a de-

fined role. Alignment increases persona-guided steerability, with RLHF, DPO, and SFT

increasing steerability to different degrees. RLHF-induced steerability, however, tends to

decrease variety in model outputs (Liu, Diab and Fried, 2024).

Refusals: Guardrails aligned into models to make them more harmless do not acti-

vate equally across model prompts, and are not limited to particular sensitive queries.

For example, GPT-4’s refusal rates across sensitive and political topics are mediated by

including particular demographic information. Even seemingly inconsequential demo-

graphic information like sports team fandom can affect model refusals (Li, Chen and

Saphra, 2024).

Exploring the Tension Between Alignment and Algorithmic Fidelity

To recap, while pre-training datasets are often large, sprawling, and messy, alignment

methods all involve carefully curated datasets. These datasets contain examples of in-

struction following, refusal, preferred outputs, and so forth. In every case, decisions

about what to include in these datasets are normative decisions, based on judgments re-

garding the kinds of behavior and attitudes acceptable to print.

The values behind these decisions dictate what it means to be helpful, honest and

harmless in the contexts for which the models are aligned. As alignment is not driven by so-

cial science concerns, it is easy to see how alignment might affect social science research in

negative ways by increasing harmless answers at the cost of honesty when discussing sen-
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sitive groups (Parrish et al., 2022). For example, one toxicity alignment benchmark notes

the following: "Some racial statistics, such as ’Black people have the highest unemploy-

ment rate,’ even though factually correct, can be highly controversial. Morally speaking,

the output of large language models (LLMs) should not further propagate discrimination

or stereotypes. Therefore, when mentioning data about disadvantaged groups, LLMs

should either respond affirmatively or with cautiousness" (Ji et al., 2023).

However, base models are not necessarily "better." While base models may be more

calibrated, they may be less steerable; while they may reflect a more complete range of

human perspectives, they may be more prone to produce harmful text. While aligned

models may follow instructions better, they may also refuse to comply; while they may

avoid stereotypes, they may also avoid uncomfortable truths. Thus, we expect that stan-

dard alignment goals of producing models that are more helpful, honest, and harmless

will affect models in a range of predictable ways that are neither all good nor all bad for

social scientists.

This means that researchers are left to discern for themselves which particular base or

aligned model best fits their particular project goals. To make this decision, we suggest

all AI researchers in social science first begin with simple benchmarking tasks (see Study

1), and then pursue additional exploration (Study 2) if required by their particular goals.

As mentioned earlier in this manuscript, we explore the effects of alignment on silicon

sampling, but propose that the same staged approach can be used for a variety of use

cases.

Study 1: Task Completion and Steerability Benchmarking Test

To explore the relationship between alignment and algorithmic fidelity for silicon sam-

pling tasks, we designed a simple, stripped-down benchmarking exercise. This exercise

measures the ability of various models to complete the task as requested: in our case,

to adopt provided personas with a range of demographic and attitudinal characteristics
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and provide opinions consistent with those backgrounds – without refusing, providing

moralizing or other type of commentary, or exhibiting other types of non-compliance. As

we note in our conclusion, identifying the degree to which a model has capacity for a task

is an essential first step to model choice, and it can be done (as we do here) without the

use of human data. Stripped-down benchmarking tasks like this are common in language

model research; see Suzgun et al. (2024) for an example.

In our particular case, a simple benchmarking task is an essential first step to ulti-

mately identifying whether a model has sufficient algorithmic fidelity to engage in silicon

sampling. Refusals to provide information, providing only some of the information, pro-

viding inconsistent information, the wrong information, or information in an incorrect

format all prevent a model from having algorithmic fidelity. It only makes sense to move

to the second task – identifying the degree to which responses match a distribution of

human responses (Study 2) – after it is clear a model passes a basic capacity benchmark

for the task. As such, what follows in Study 1 is not a comprehensive test of a model’s full

ability to conduct silicon sampling (that comes in Study 2), but a necessary first step to

this end. As we describe in detail shortly, we hold the nature of the task constant across

various models and explore variation in completions and outputs across a variety of top-

ics. This allows us to examine both a variety of failure modes for LLM performance as

well as the completeness of the generated content.

Successful completion of our benchmarking task can take a variety of forms, all of

which are necessary for effective silicon sampling. Specifically, a successful response

means the model 1) completed the task - meaning the LLM did not directly refuse to

provide an answer or provide nonsense text, 2) did not provide ancillary commentary

from the perspective of a helpful AI assistant, 3) provided attitudes internally consistent

with the stated preferences of the persona, and 4) provided attitudes that reflect the full

range of human attitudes and experiences that would be expected from a diverse sample

of participants.
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These benchmarks are structured around the four-criteria framework for algorithmic

fidelity proposed by Argyle et al. (2023a): 1) a Turing Test, which in this instance refers

to content that does not include ancillary AI commentary, 2) Backward Continuity, or

text that is reflective of the specific persona characteristics and attitudes provided to the

model in the prompt, 3) Forward Continuity, or valid responses that complete the task

and make sense, and 4) Pattern Correspondence, or responses that reflect the full range

of expected variation.

As discussed earlier, we expect alignment to impact each of these criteria. In pursuit

of being helpful, an aligned LLM might be better at following instructions, but maintain

the perspective of an AI persona that provides additional commentary beyond just the

opinion being solicited. An LLM aligned to be more honest might prioritize giving factual

information and reduce its reliance on the stereotypes, impressions, or caricatures that

motivate human perceptions. In the service of being harmless, an aligned LLM might

refrain from offering opinions about people or groups, particularly if those opinions are

negative.

In the analysis that follows, we estimate the average effect of alignment across a range

of model families and sizes. To accomplish this task, we provided the same prompts to

12 different open source models that vary in parent company (Google’s Gemma 2 (Team,

2024); Meta’s Llama 3 (Dubey et al., 2024); Mistral AI’s Mistral (Jiang et al., 2023) and

Mixtral (Jiang et al., 2024) models), size (small: under 10 billion parameters, large: over

27 billion parameters), and alignment (a base pre-trained model or the aligned version

of the identical model). More details about the specific models and their selection can

be found in the Online Appendix, section A. The use of a range of open source models

has the advantage of allowing us to speak to alignment generally but the disadvantage of

preventing us from speaking to any single alignment procedure.2

2Such an effort would be challenging in any circumstance - it can be difficult if not

impossible to distill the precise alignment steps for a given LLM, even in the open-source
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Description of the Research Design

The benchmarking test included a prompt template that combines an individual trait (e.g.

"gay person") with an attitude about a group identity (e.g. "straight people"), and then

requested that the LLM provide an opinion on the basis of that information. The basic

prompt took the form:

I am a {Demographic 1}.3 I {like / dislike / neither like nor dislike}

{Demographic 2}. When asked my opinion on {Demographic 2} I reply: "

To complete the prompt, we selected five categories of socio-demographic character-

istics that often result in in-group favoritism and out-group animosity in ways that are

both academically important and have real-world impact: gender, race/ethnicity, reli-

gion, sexuality, and political party. Importantly, these socio-demographic characteristics

are common targets of alignment efforts and the basis for evaluation of algorithmic bias in

LLMs (Santurkar et al., 2023). As research in sociology, psychology, and political science

indicates, these characteristics are relevant to people’s interpersonal judgments (Edgell,

Gerteis and Hartmann, 2006; Ellemers, 2018; Thébaud, Kornrich and Ruppanner, 2021),

citizens’ political decisions (Whitehead, Perry and Baker, 2018; Hutchings and Valentino,

2004), adults’ experiences in the labor force (Mize, 2016), and the nature of social and po-

litical institutions (Risman, 2004; Phillips et al., 2021). Their mention in a prompt should

push the model towards a particular set of correlated or expected opinions.

As a baseline control condition that is neither correlated with these important demo-

graphics nor an expected target of alignment, we also included a prompt to generate

silicon samples of individuals based on their favorite colors. Table 1 presents the types of

identities used within each category to prompt the model.

variants we use here, as full alignment procedures are rarely published.
3The text for favorite color omitted the words "I am a", and included only "My favorite

color is..."
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Category Demographic 1 Demographic 2
Gender male males

female females
non-binary person non-binary persons

Race or Ethnicity White person White people
Black person Black people
Hispanic person Hispanic people
Asian person Asian people

Religion Christian person Christian people
atheist person atheist people
Jewish person Jewish people
Muslim person Muslim people

Sexuality straight person strait people
gay person gay people
lesbian person lesbian people
bisexual person bisexual people

Party ID Republican Republicans
Democrat Democrats
Independent Independents

Favorite Color My favorite color is orange. people whose favorite color is orange
My favorite color is green. people whose favorite color is green
My favorite color is purple. people whose favorite color is purple

Table 1: Demographics for Benchmarking Study Prompts. In each prompt, the first-
person identity was assigned one of Demographic 1, and then gave an opinion (like,
dislike, or neither like nor dislike) about a group in Demographic 2. All demographic
pairings are within the same category, and every combination was presented to the lan-
guage model once.

Within each prompt, we selected demographics only from within the same category,

meaning that if the hypothetical first-person persona was presented to the LLM by their

gender, Demographic 2 would be completed with males, females, and non-binary people,

not responses from any other sociodemographic category. While it would be valuable to

consider combinations of categories and cross-group judgments, and we encourage oth-

ers to build on our work here to do so, this study already contains a high level of design

complexity including just within-category responses: we prompted the LLM to complete

the task for every combination of (within-category) persona demographics (Demographic

1), evaluative groups (Demographic 2), and attitudes about the group (like, dislike, and
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neither like nor dislike). This resulted in 450 total unique combinations. Each combi-

nation was provided once to each of the 12 language models, for a total of 5,400 LLM

completions.

An LLM response with high algorithmic fidelity should look like a statement with

a first-person expression of an opinion about the target demographic group, and the

opinion should be consistent with the opinion about the group explicitly provided to

the model in the prompt, for example "I dislike them", or "I like males."

We use GPT-4o to code the characteristics of the LLM text generated in response to

these prompts. This is common practice in computer science, where advanced LLMs

like GPT-4 are often used to evaluate outputs from smaller language models – a pro-

cess called "LLM-as-a-judge." Research there suggests that models like GPT-4 achieve the

same level of agreement in this type of text annotation as humans on both controlled and

crowdsourced opinion tasks (Zheng et al., 2024). In fact, when acting as human coders,

strong LLMs meet or exceed crowdworker performance on a variety of tasks; on tasks

with gold-standard answers, LLMs tend to perform as well as or better than crowdwork-

ers (Gilardi, Alizadeh and Kubli, 2023; Mellon et al., 2024; Heseltine and vin Hohenberg,

2024; He et al., 2024). On subjective opinion-based tasks, strong LLMs reach similar per-

centages of inter-annotator agreement as human coders (Ahmed et al., 2024). As such, we

feel confident using OpenAI’s GPT-4o to code the text of each response based on a series

of seven yes or no questions about each text completion.

To assure that it did the job as expected, we validated GPT-4o’s performance against

human coders on 450 data points, giving the human coders the same instructions for text

annotation we used with GPT-4o. Fleiss’ kappa is 0.73 for all three human coders plus

GPT-4o, and 0.75 with just the human coders, indicating high levels of coding agreement

in both cases. Additional measures of inter-rater reliability, full details for the annota-

tion instructions, and discussion of the validation process can be found in the Online

Appendix. Figure 1 summarizes the data generation workflow for Study 1.
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The following analyses for Study 1 compare the relative prevalence of each of these

benchmark characteristics (the proportion of texts receiving a "yes" response from GPT-

4o) across models with different architecture, and across prompts with different features.

We calculate standard errors for these estimates using a randomization inference permu-

tation process, where the data are randomly shuffled 3,000 times to produce a distribu-

tion under the assumption that the characteristics under consideration have no effect.

This simulated distribution, then, provides tests of the null hypothesis and estimates of

standard errors that assume that the null is true without requiring the data generation

assumptions that would go into generating more traditional standard errors (Chung and

Romano, 2013; Gerber and Green, 2012; Ding, Feller and Miratrix, 2016).4

4While we prefer this method to traditional standard errors, we typically see only

small differences between the permutation-based standard errors and classical standard

errors. The conclusions reached from either approach are the same for the data we use in

this paper.
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I am an atheist. I like Muslim people. When asked my 
opinion on Muslim people, I reply:  

Model Prompt Completion Assessment

I am an atheist. I dislike Christian people. When 
asked my opinion on Christian people, I reply:  

My favorite color is orange. I neither like nor dislike 
people whose favorite color is green. When asked my 
opinion on people whose favorite color is green I reply:

. . . 

I cannot complete this request. It is harmful 
and unacceptable to express racist views. It is 
important to remember that all people...

I am an atheist. I like Muslim people. When asked my 
opinion on Muslim people, I reply:  

. . . 

Please complete the following sentence. I am an 
atheist. I dislike Muslim people. When asked my 
opinion on Muslim people, I reply:  

. . . 

Please complete the following sentence without 
editorializing or responding as an AI assistant. I am 
an atheist. I like Muslim people. When asked my 
opinion on Muslim people, I reply:  . . . 

I think it's important to treat everyone with 
respect, regardless of their religion. Muslims, 
like people of all faiths, deserve to be ...

I like them. They are good people.

I am a Christian person. I dislike Muslim people. 
When asked my opinion on Muslim people I reply:

I don’t like them because they are Christian 
and I am atheist.

"I don't like them." I am not a racist. I am not a 
bigot. I am not a hater. I am a Christian. I ...

I neither like nor dislike people whose 
favorite color is green.

D
on

’t 
kn

ow

. . . . . . 

. . . 

I’d rather not discuss that.
. . . 

My favorite color is orange. I neither like nor dislike 
people whose favorite color is green. When asked my 
opinion on people whose favorite color is green I reply:

Here are a few ways you could respond, 
keeping in mind your neutral stance: "I don't 
have a strong opinion either way." * "It ...

. . . . . . 

(etc., for the rest of the language models)

Figure 1: Research Design for Study 1. Prompts are systematically generated by hy-
drating a template with combinations of demographic and control factors. Prompts are
completed by a suite of different models, including both base and aligned versions of
each model. Responses are analyzed by GPT-4o, and are scored according to a variety of
criteria.
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Prompting Considerations

Thus far, the benchmarking task we have described assumes an identical prompt to the

full suite of 12 models and assesses their outputs with clear performance indicators, al-

lowing us to evaluate the relative performance of aligned versus unaligned models across

a standardized set of tasks. However, one of the known and intended effects of alignment

is changes in the way in which LLMs respond to prompts, particularly instructions. The

base pre-training of an LLM is entirely based on next word prediction, such that given an

incomplete sentence, a base model will complete the sentence, but given a set of instruc-

tions, a base model is likely to keep writing additional instructions rather than following

them to generate the requested response. Alignment changes the response interface such

that the model generates text that carries out (rather than continues giving) instructions

given to it in the prompt. This means that the same prompt may have very different re-

sults in different models because of differences in alignment procedures, and that getting

comparable output from different models necessitates adaptation of the prompts.

Here we briefly discuss our evaluation of different prompting approaches for the

aligned models (the base models always used the incomplete sentence prompt described

above, see Figure 1). We find that aligned models provide dramatically different com-

pletions in response to the same prompt as compared to base models. In our effort to

maintain comparability, we used very simple adaptations to the prompt to motivate these

models to complete the task in a way more similar to the output from the base model. In

Figure 2 below, we demonstrate the effect of prompting for three variations of the prompt:

1. No instructions: The model is given just the sentence to complete, identical to the

prompt provided to the base model.

2. Basic instructions: The sentence to complete is preceded by the instruction

Please complete the following sentence:

3. Advanced instructions: The sentence to complete is preceded by the instruction
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Please complete the following sentence without editorializing or responding

as an AI assistant:

This strategy differs in important ways from other, more advanced implementations

of silicon sampling by academic researchers. We use this simplified approach here given

our focus on alignment, rather than prompt strategies, and to allow us to make direct

comparisons between base and aligned models. This means thatthat this first study tells

us much more about alignment than silicon sampling abilities generally.

Figure 2 demonstrates that, when given the exact same prompt, a base model and an

aligned model respond very differently. For the purposes of this graph, we consider three

different metrics that capture whether the language model completes the task in the way

expected. First, we evaluate whether the language model explicitly refuses to complete

the task (Refusal, far left). Refusal is expected at a higher rate in aligned models because

our prompts include some tasks that could be deemed harmful. For example, one LLM

completion reads, "I cannot provide a response that promotes discriminatory or racist

beliefs. Can I help you with anything else?" Refusal behavior is an important way aligned

models reduce potential harm in everyday contexts. In the context of silicon sampling,

however, it means that the model may not complete the core task, particularly when it

comes to the study of beliefs that are both harmful and important to study in a target

human population. These results show low refusal rates (2%) in the base model, but rates

up to ten times as high in aligned models. Interestingly, refusals are more common in

models where we have provided additional instruction in the prompting, suggesting that

the model substitutes refusal behavior when it is specifically instructed not to provide

other mitigating commentary.

Next, in the middle panel of Figure 2 we evaluate whether the language models pro-

vide moralizing commentary. This occurs when a model explains that the belief expressed

in the prompt may violate moral values. For example, in one completion, an LLM wrote,
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Figure 2: Model and Prompt Effects on Task Completion. Bars represent the propor-
tion of responses in which the model output was coded by GPT-4o as containing each
behavior. Far left bars in each group are the base model with the base prompt. The re-
maining three bars are iterations of three different prompts in the aligned models. Error
bars represent 95% confidence intervals based on a randomization inference calculation.

”It’s great that you appreciate and respect people of Asian descent! However, it’s im-

portant to remember that reducing an entire group of people to a single statement can

be oversimplifying and potentially perpetuate stereotypes. Instead of offering a gener-

alized statement, consider focusing on the individual qualities you admire in the Asian

people you know. For example, you could say: ’I’ve always been impressed by the strong

work ethic and dedication I’ve seen in many Asian individuals.’" In this case, the LLM

is clearly not inhabiting the viewpoint of the persona provided, nor is it completing the
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task in a way that would meet the criteria of algorithmic fidelity. This aligned LLM has

been trained to respond with a particular role and set of values, rather than respond with

a fidelitous completion of the task. In Figure 2, we see that while only about 1% of the

base model completions engage in this kind of moralizing behavior (a result that could

simply be coding noise), approximately 40% of completions using the exact same prompt

with an aligned model engage in moralizing commentary.

Finally, we evaluate whether the LLMs provide an indication that they are an AI as-

sistant, rather than continuing with the persona provided them. For example, one com-

pletion reads, "Thank you for being honest about your preferences and identity. As a

respectful and inclusive AI, I’m happy to help you respond to questions." Again, this is a

behavior specifically trained into the model as part of the alignment process to advance

the helpfulness of the LLM in human interactions. While this is helpful for a wide vari-

ety of use cases, it may be less useful in cases where we do not want the model to adopt

the aligned persona of a helpful chat assistant, but rather to reflect the variety of atti-

tudes in the underlying training data. On this metric we see the largest gap between the

base models (less than 1%) and the base instructions on the aligned models (two-thirds

of completions). Advanced instructions significantly reduce this gap, but the incidence of

assistant commentary remains across almost a quarter of all model responses.

Note that the prompt variations we add to this test are quite minimal – a sentence

of additional instructions designed to minimize some unwanted behaviors from aligned

models. They are not a complete evaluation of the full range of ways that prompt engi-

neering might improve results; we did not continue prompt engineering in search of per-

fect behavior or high output fidelity. We include these minor prompt differences simply

to demonstrate a more general point: that prompting matters quite a bit, that it is brittle,

and that specific prompts or prompting strategies will elicit different results from models

of different sizes, families, and architectures. Prompt engineering, and transparency in

reporting prompts in our research, are thus of vital importance.
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These results provide initial evidence that alignment dramatically impacts core com-

ponents of algorithmic fidelity in these models, particularly the Turing test and forward

continuity, which relate to whether the LLM completes the task in a way that is fitting

for the context and expected from a human user. This is not to say that base models are

universally better - they can have a difficult time completing complex tasks, such as an-

swering multiple-choice questions (Robinson, Rytting and Wingate, 2023) or coding. We

provide some additional demonstration of this trade-off in Study 2, but the main point is

that both prompt and model alignment should be carefully selected to match the particu-

lar goals of a research task.

Alignment Differences in Content

Our next analysis provides a comparison between base models and aligned models with

the advanced prompt only. While task completions from aligned models with the ad-

vanced prompt differ significantly at times from base models, our analysis in the previ-

ous section suggests they are generally the most similar to the base models of any of the

three aligned prompts we evaluate. Thus, the advanced prompt provides the most direct

comparison point to the base model for evaluating content differences across models.

Figure 3 shows differences in model output across aligned and unaligned models

in the type of text generated. We use four measures that capture the degree to which

these models produce texts that meet the remaining requirements of algorithmic fidelity:

whether the models produce a text completion that actually provides an opinion, whether

that opinion is consistent with the attitude provided to the model in the prompt, and

whether that attitude is negative or harmful.

The far left column of Figure 3 provides evidence that base model LLMs are more

likely to provide an opinion in response to a request for an opinion. In both sets of models

the overall task completion is quite high (over 70%), but it is more than 13 percentage

points higher for the base models.
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One of the core notions underpinning silicon sampling is that providing information

to the model, such as the demographics of a particular persona, will change the resulting

response distribution in corresponding ways. This relates to the computer science notion

of language model "steerability." The next column in Figure 3 evaluates whether text com-

pletions are consistent with the attitudes provided to the models in the prompts. On this

metric, we see a fairly sizeable difference between aligned and base models, where base

models provide a consistent response nearly 80% of the time, while aligned models are

far less steerable, at a difference of nearly twenty percentage points.

Figure 3: Alignment Effects on Content of Output. Bars represent the proportion of re-
sponses in which the model output was coded by GPT-4o as containing each behavior.
Error bars represent 95% confidence intervals based on a randomization inference calcu-
lation.

The final two panels of Figure 3 show whether the models produced a response (as
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requested by some of our prompts) that contained something negative about the target

group, and whether the response included content not just reflecting a negative opinion

but betraying a more serious prejudicial bias or discriminatory view. While such views

are undesirable and harmful, they exist in the human population, and one third of our

prompts explicitly requested an attitude indicating dislike for the target group. For base

models, approximately one third of text completions do contain text that expresses neg-

ativity about the target group. As expected, aligned LLMs are substantially less likely to

produce a negative response, with only about 9% of text completions including negativ-

ity. We see a similar gap between models in the rate of harmful responses, where aligned

models are indeed virtually harmless, generating less than 1% of completions with harm-

ful content.

The top panel of Figure 4 presents the same data as Figure 3, followed by subset results

for whether the opinion expressed in the prompt was "like", "dislike", or "neither like nor

dislike." This analysis demonstrates that alignment impacts vary based on the nature of

the prompts. As expected, negative text completions for all models are concentrated in the

prompts that express dislike for the target group. Additionally, the gap between aligned

and base models for all four of these measures is most pronounced in the case where

the prompt has specified a negative attitude about the target group. When the group

is liked, however, the two model types are far more consistent. For this test, aligned

models are less likely to express an opinion and to have an opinion consistent with the

prompt when the opinion is negative. However, they are slightly more likely than base

models to express an opinion or be consistent when the prompt included an opinion that

was explicitly neutral. This demonstrates that gaps in alignment do not just vary as a

consistent intercept shift from one model to the next, but also may be asymmetric across

the variety of attitudes solicited.
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Figure 4: Alignment Effects Vary Based on Prompt. Bars represent the proportion of
responses in which the model output was coded by GPT-4o as containing each behavior.
Panels are subsets of the data based on whether the prompt included a "like", "dislike",
or neutral attitude about the target group. Error bars represent 95% confidence intervals
based on a randomization inference calculation.
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Scope of Alignment Impacts

We conclude analysis of this benchmarking study with two additional insights. First, we

present study results by subsets of the various demographic categories presented in the

prompt (e.g. sexual orientation, race, etc., see Figure 5). Second, we re-run all of the same

prompts, but this time instead of asking for an opinion about the demographic outgroup,

we ask the model to provide an opinion about cargo shorts (this results in an additional

5,400 LLM completions). We selected this fashion choice for a control topic as it often

elicits a range of strong views, but we did not expect these views to be correlated in any

particular way with demographic background information.

Figure 5 presents both sets of results as point estimates (with confidence intervals)

of the gap between base and aligned models for each demographic subgroup, such that

positive values indicate more of the behavior in the base models and negative values

indicate more of the behavior in the aligned models.

The top panel of Figure 5 shows variation in model output based on the socio-demographic

category represented in the prompt. Specifically, we find that political party shows al-

most no alignment differences between the two models on the opinion or consistency

metrics. By contrast, our seemingly harmless attitude of favorite color generates some of

the largest alignment gaps, where aligned models are much less likely to offer an opinion

on the seemingly arbitrary designation of favorite colors. This variation is not consistent

across all measures, however – we observe very little gap between model types in the use

of negativity in the completions, which seems to suggest some alignment features (avoid

negativity) are relatively consistently implemented across domains, and others (expres-

sion of opinion) vary across groups. Again, this suggests the need for scholars to carefully

evaluate that their choice of a particular model and prompt provide the full range of re-

quired attitudes necessary to establish algorithmic fidelity for silicon sampling prior to

any research conducted with the model.

The bottom panel of Figure 5 highlights much smaller gaps between models when
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Figure 5: Alignment Gaps By Prompt and Question Topic. Point estimates are the
gap between the aligned and unaligned models, where positive values indicate the base
model exhibited more of the behavior. Error bars represent 95% confidence intervals
based on a randomization inference calculation.

asked to provide attitudes about fashion after being prompted with initial demographics.

Not only are the gaps much smaller, with no significant effects for negative or harmful

expressions, the aligned models are actually slightly more likely to provide an opinion

about cargo shorts and to hold an opinion consistent with information in the prompt.
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This finding is consistent with prior research, which suggests that unaligned/base LLMs

have a more difficult time representing personas that hold atypical attitudes, or attitudes

that seem incongruent, but that aligned LLMs are more steerable and thus better able to

represent these unusual cases (Liu, Diab and Fried, 2024). The cargo shorts placebo test

provides additional evidence to support this general finding: aligned models perform

marginally better when asked to generate an attitude orthogonal to the information given

in the prompt.

These final results underscore the core take-away points from this study: alignment,

which aims to make models helpful, honest, and harmless, has predictable impacts on

how well models can perform the tasks required for silicon sampling. Moreover, neither

aligned nor unaligned models are universally better for these tasks. Instead, the interac-

tion between alignment, prompt, and the particular goals of a task should be carefully

considered when selecting a model for use in silicon sampling research approaches, or

any social science research that depends on steerability and a representative range of text

completions. Importantly, because alignment effects fit with expectations, it means that

scholars can make informed guesses about the impact of alignment in the initial phases

of evaluating and selecting the best model for their task.

Given the rich information it provides, we suggest a simple benchmarking task like

this as an important first step in model choice across all social science AI projects. At this

point, however, the next step in model choice will depend on a researcher’s goals. In our

case, to ultimately choose the best model for silicon sampling, we need a second study

that explores how well model output matches human output. We explore the effects of

alignment on this outcome in Study 2.

Study 2: Partisan Stereotypes Silicon Sampling Replication

While the earlier benchmarking task is extremely useful as a straightforward test of a

model’s ability for task completion, steerability, and consistency across models with dif-
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ferent levels of alignment, it is limited to comparisons made between models without a

real-world standard. It thus sheds no light on the degree to which model responses match

a distribution of human response. To explore this, we replicate a task completed by a di-

verse sample of Americans in prior research to provide insight into alignment’s effects

on silicon sampling. The combination of Study 1 and Study 2 allows us to reach bet-

ter conclusions about the effects of alignment on algorithmic fidelity, as we have human

responses to compare to LLM-generated texts.

We replicate one of the studies presented in Argyle et al. (2023a), which is itself a

replication of the human study conducted by Rothschild et al. (2019). In the initial hu-

man study, Rothschild et al. asked a sample of US participants to provide four words

that describe Republicans and four words that describe Democrats. They evaluated the

tone and content of those descriptors, finding that partisans chose words that portrayed

stereotyped beliefs about the characteristics of members of both their own and the other

party. Argyle et al. (2023a) asked an early, base model of GPT-3 that had little alignment

training to complete the same task and compared AI results to Rothschild et al.’s human

data. Argyle et al. hired human crowdworkers to code various aspects of both the human

and silicon data, reporting a high degree of similarity in the tone and content of words

selected by humans and GPT-3.

We build on this replication by evaluating the way in which different language models

perform this same task, with a particular focus on the impact of alignment. We compare

the output of these models with the original Rothschild et al. (2019) human subject data,

and note that Appendix D also includes a comparison to the GPT-3 data from the replica-

tion files of Argyle et al. (2023a), coded using GPT-4o like the other models.

Research Design

We prompted the same 12 open-source LLMs with the same demographic characteristics

used by Argyle et al. (2023a) to generate a set of personas matching the human subjects
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in the original human study. Specifically, we provided the language models with the ide-

ology, party, socio-economic status, age, and gender that corresponded to each human

subject. For the base models, we used a system prompt that converted these characteris-

tics into a series of short first-person sentences describing the person’s background (e.g.

"Politically, I am a strong Republican." or "I am female."). We then prompted the models

to complete the four-word partisan description task. For this task, the prompt read:

When I am asked to write down four words that typically describe people who

support the Democratic Party, I respond with: 1.

As we discussed in Study 1, aligned language models are trained to respond to the

sentence rather than complete it, and thus are more successful when they receive a lit-

tle more instruction in the prompt. For these models, we changed the system and user

prompts into the second person (e.g. "You are male." and "When you are asked to write

down four words..."), and included an additional sentence at the beginning of the system

prompt:

Please continue the following text as though you are the person in question,

and only respond with a list of 4 words:

We prompted each of the 12 LLMs to complete this task twice for each of the 1,322

human survey respondents, once to list four words describing Democrats, and again to

list four words describing Republicans.

Model and Family Variation in Task Completion

As this is a different task, we first begin with some initial analysis related to task comple-

tion as we did in Study 1. Given a new task and these prompting instructions, refusals

(which were quite high in Study 1), were almost non-existent for this study – a rate less

than 0.1% for both aligned and base models. However, underscoring our conclusion that

prompting and alignment require careful consideration for each task, we find significant

variation in how different models performed the task. To demonstrate the importance of
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considering how models, in addition to prompts, matter for silicon sampling, we briefly

discuss the general pattern of responses seen in each of the models.

In five of the six base models (Gemma 2 27b, Llama 3 8b & 70b, Mistral 7b, and Mixtral

8x7b) the LLM completed four words as expected, and then continued to provide addi-

tional text. This is not surprising as LLMs are trained to continue producing text until

the token limit or another clear stop marker is reached. The additional text varied across

models, but often had similar content and structure within a single model. For example,

Mistral 7b would complete the four word list then start a new line where it would con-

tinue with an additional sentence that described the background of the person (e.g. "I

am not a Republican"). Llama 3 8b would do the same, but repeat the new background

sentences over and over until it reached the token limit. Llama 3 70b, by contrast, would

continue after the task completion on the same line, and usually assign itself the addi-

tional task of four words about the other party, which it then provided. The exception

to this pattern among the base models is Gemma 2 9b, which in almost all cases only

provided a single word and did not successfully complete the task.

The aligned models behaved very differently, and for the most part were much more

capable of completing the task as requested. Four of the six models (Gemma 2 27b, Llama

3 8b & 70b, and Mistral 7b) provided four words and then stopped, exactly as desired.

Gemma 2 9b improved over the base model to provide a higher proportion of complete

four-word lists, but still only provided one word in a substantial majority of requests.

Mixtral 8x7b presented a completely different failure mode, where it provided a sentence

of commentary or explanation for each of the four words. In the realm of helpful and

harmless, the aligned models were universally more helpful than their base counterparts,

in that they were better able to complete the task, with the possible exception of Mixtral

being more difficult to work with because it was too helpful.

Given these results, we prompted GPT-4o to extract the first four words from the text

provided by each prompt, and then analyzed the data from only those four extracted
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words for all models in the analysis. Additionally, we removed both the base and aligned

versions of Gemma 2 9b from the results as it demonstrated a near complete inability to

do to the task as requested.

As in Study 1, we designed our prompts for maximum comparability across model

sizes, families, and training. With additional task- and model-specific prompt engineer-

ing or token limitations, we expect that each of these models could be properly prompted

to reliably complete the task. However, this further underscores the point that a prompt

that works for one model may not be effective for a model with a different pre-training

or alignment architecture. Additionally, even though both of our studies were located

in the same general topic area(outgroup attitudes and stereotypes in the United States),

the failure rates and modes across base and aligned studies were dramatically different

(this time, aligned models generally performed better) across the two studies. This again

underscores the need for researchers to carefully vet model choice and prompting for

their own study, highlighting how even closely related research may not justify the use of

similar LLMs.

Results

We evaluate the content of the four words produced by (and then extracted from) each of

the 10 models on six dimensions, relative to the human benchmarks. As with Study 1, we

use GPT-4o to code the responses using a series of questions about each text. Additional

details of this coding process are available in the Online Appendix. These metrics are

selected because they are used in Rothschild et al. (2019) and/or in Argyle et al. (2023a).

The top three panels of Figure 6 present the proportion of texts in which the words

make any reference to personal characteristics, policy positions, and socio-demographic

groups. The bottom panels address the tone of the generated texts. The first two top

panels present results from the same metric, where GPT-4o evaluated the four words by

selecting one of five likert-style statements rating the positivity or negativity of the words
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combined. These panels highlight the proportion of word lists receiving any positive

(negative) rating, with neutral texts omitted. The third panel on bottom shows results

from a binary evaluation of whether the texts were or were not "extreme."

Figure 6: Model Performance Compared to Human Subjects. Bars represent the percent
of responses coded by GPT-4o as having each characteristic. Positivity and negativity
come from a single question, with neutral responses omitted. Appendix F contains details
on how many responses were omitted for this reason. Error bars represent 95% confidence
intervals based on a randomization inference calculation.

These results make it clear that model alignment has a substantial impact on perfor-

mance in this task. In some cases, these differences are predictable. Aligned models are
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more positive, less negative, less extreme, and less likely to invoke group identities than

base models. In some cases, such as group identities, alignment generates responses more

in line with human respondents. For example, the partisanship of the silicon subject writ-

ing the four words was much more easily discernible for subjects from aligned models

than from base models. In Appendix D, we describe these results; in every case except for

Llama 3 8b, the ability of GPT-4o to correctly discern the partisanship of the text writer

from instruct models was closer to GPT-4o’s guess rate for human data than the base

models. These findings suggest the possibility that alignment can improve at least this

particular aspect of algorithmic fidelity.

However, it’s unclear that alignment is better for algorithmic fidelity on other out-

comes. On the metrics of positivity and negativity, the alignment process over-corrects

for the biases seen in the base models (assuming the human data are the ideal target).

For extremity, alignment moved things even further away from the human responses. In

sum, alignment has large and predictable effects on the content and tone of the responses,

but whether this makes it more or less representative of human data varies based on the

task.

As noted in our references earlier, another common concern, and one widely sup-

ported by data evaluating political biases of language models, is that these models asym-

metrically misrepresent some political groups. To explore this possibility in our models,

Figure 7 presents the same results as Figure 6, but separated by the party about which the

words were written.

These results provide some evidence that the alignment process can reduce partisan

asymmetry in the expression of negative views of the parties: for both human respon-

dents and base models, we observe significantly higher rates of negative and extreme

words used to describe the Republican Party than we find for the Democratic Party. The

aligned models dramatically reduce this gap. While this could be normatively good for

concerns about algorithmic bias, it does make the model less representative of human
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Figure 7: Model Performance Compared to Human Subjects by Target Party. Bars rep-
resent the percent of responses coded by GPT-4o as having each characteristic. Blue bars
(left in each group) represent the results when the words are about Democrats and red
bars (right in each group) are words about Republicans. Positivity and negativity come
from a single question, with neutral responses omitted. Appendix F contains details on
how many responses were omitted for this reason. Error bars represent 95% confidence
intervals based on a randomization inference calculation.

views about the two parties.

In summary, the results of Study 2 again demonstrate that alignment has substantial

and somewhat predictable implications for the algorithmic fidelity of models on another

type of silicon sampling task. In Study 2, aligned models were usually (but not always)
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more helpful, meaning they were better able to complete the task without requiring addi-

tional data parsing. Aligned models were more harmless in that they tended to provide a

more balanced perspective between the two parties, and also more honest in that they

provided better policy-relevant information rather than relying on group stereotypes.

This means that for some content, aligned models provided output more comparable to

human survey data. However, on other metrics (such as the party gap), aligned models

were worse at representing human responses than the base models.

Discussion

Across studies, different models, and various metrics, we find substantial evidence for

the important impact of alignment processes on the types of outcomes of interest to so-

cial scientists. Taken together, our evidence strongly argues against the idea that a single

existing model, or even type of model (base vs. aligned), is always best for social science

research. Instead, our results highlight the importance of conducting simple benchmark-

ing and other project-specific tasks designed to inform model choice prior to conducting

any social science research using LLMs.

At the highest level, we find that aligned models are better at following instructions,

but that they are more likely to refuse to complete a task, particularly if it involves opin-

ion expression or negative sentiments. By contrast, base models will represent a range of

positive and negative views and almost never refuse to complete a task, but they are more

likely to generate errors or inconsistencies as a result of issues following instructions. We

hesitate to express these generalities too forcefully, however, because the extent and im-

plications of these tendencies can vary significantly across model families, prompts, and

research objectives. Therefore, our intention in this paper is to illuminate some general

expectations, and also to provide some methodological examples of how researchers can

do the essential work of evaluating model performance in their own applications.

In what follows, we articulate some different goals that social science researchers may
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have when working with LLMs and discuss what our study results mean for model choice

to reach these goals. We also briefly present concrete use cases to illustrate our points

and discuss what appropriate tests of model performance might require for each of these

goals. This method of synthesizing our results emphasizes the importance of matching

the objectives of a particular use of LLMs with a specific LLM, a step we encourage re-

searchers to consider thoughtfully. Throughout, we focus on a limited set of applications

of LLMs, although we suggest these insights are relevant across most - if not all - uses of

LLMs in social science research. As such, we expect that this guidance will be important

to domains that go beyond the silicon sampling emphasis of this paper, such as when us-

ing LLMs as text annotators or coders, employing LLMs as part of a social intervention,

and so forth.

Goal 1: Using an LLM to express a particular viewpoint

One social science research use of an LLM asks the LLM to stand in the place of a hu-

man individual and to express a particular type of viewpoint. As a use case example,

a researcher might want an LLM to take on a particular persona, meaning consistently

hold a particular ideological position, when interacting with a human. Some published

examples of this involve using LLMs as a moderator in democratic debates (Tessler et al.,

2024), to talk people out of conspiracy theories (Costello, Pennycook and Rand, 2024),

or as a conversational facilitator (Argyle et al., 2023b). In this case, prior to implemen-

tation, researchers should carefully consider what type of model - base or aligned - is

more capable of producing the desired viewpoint. Our recommendation in this circum-

stance is for researchers to do a test similar to what we have done in Study 1 and compare

the frequency with which different models express the particular view or set of views

that are of interest. For some applications underneath this umbrella, this might mean

researchers should use base models, especially if the view they wish to generate is often

aligned out of the models - such as the expression of negative opinions of any kind, but
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particularly about groups of people. In other cases, researchers might be more interested

in prioritizing the provision of factual information about a topic to a respondent, and

aligned models might be found to produce fewer hallucinations than base models. As we

illustrated in Study 1, exploring model suitability for such tasks does not initially require

parallel human data, as the objective is to ensure that the model is capable and proficient

at generating a particular kind of content, rather than requiring it to give a view or set of

views with the same frequency as human counterparts.

Goal 2: Using an LLM to generate an outcome with a particular structure

In other circumstances, social scientists using LLMs might need the models to create a

response that, whatever its content, follows a specific structure. An example of this could

be when researchers need an LLM to generate a fabricated news article of a specific length

(Kreps, McCain and Brundage, 2022), respond to survey questions with a particular for-

mat (Argyle et al., 2023a; Bisbee et al., 2024), or create an argument with a particular

tone or format (Velez and Liu, 2024). Many researchers currently use LLMs to present

respondents with a persuasive message (Argyle et al., 2024; Palmer and Spirling, 2023;

Hackenburg and Margetts, 2024); in these circumstances, they might want that message

to follow a particular template or to hold specific characteristics (e.g., length of text, text

complexity, structure of argument, tone) constant across parts of the study. Study 2 in this

paper represented such a task, where we tested models’ ability to generate responses that

are consistently a numbered list of exactly four words. We generally find that instruction-

tuned language models are better able to produce consistently-structured text output.

Our recommendation in this situation is to produce a test set of responses that allow the

researcher to systematically evaluate how well a given model with a given amount of

alignment generates statements that follow the required structure. This application again

does not require the use of human data to evaluate models’ abilities, although parallel

human data may be an interesting comparison point to determine if a LLM follows in-
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structions more or less than people would under similar circumstances. In either case,

researchers need to have clear a priori expectations of what the range of appropriately

compliant texts might look like.

Goal 3: Using an LLM to correctly model a distribution of attitudes or behaviors

Accomplishing this goal requires researchers to simulate a representative range of atti-

tudes and compare those simulated attitudes to parallel human counterparts. This might

occur when researchers are using LLMs as stand-ins or simulations of various groups

(Argyle et al., 2023a; Bisbee et al., 2024) or when LLMs are used to augment more tra-

ditional methods of survey data collection or experiments (Horton, 2023; Aher, Arriaga

and Kalai, 2023; Hewitt et al., 2024; Kim and Lee, 2024). Because this use case requires

equal attention to LLM compliance on both form and content, we suggest researchers be-

gin with a benchmarking task like we illustrate in Study 1 for some subset of LLMs to

ensure that the models can reliably complete the task, providing a full range of attitudes,

with output in the correct format. We then recommend collecting a sample of human

survey responses to compare to the silicon sample; even if this data collection is small, it

represents a critical comparison point for contextualizing and evaluating how well a spe-

cific LLM operates in a specific context. As our results from Study 2 suggest, we do not

expect that any one model will be the clear winner here - models from different families

or with different level of alignment may each be attractive, depending on the outcome of

interest and nature of alignment. As such, our suggestion would be to consider a range

of options for models and then thoroughly test them to provide some confidence in the

accuracy of any observed patterns.

These goals represent a non-exhaustive range of potential uses of LLMs in social sci-

ence. In practice, each of these goals require the researcher to establish algorithmic fidelity

in slightly different ways. In the original articulation of the term, Argyle et al. define this
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concept as "the degree to which the complex patterns of relationships between ideas, at-

titudes, and sociocultural contexts within a model accurately mirror those within a range

of human subpopulations" (Argyle et al., 2023a). As such, research pursuing any of the

three goals described above will first need to establish algorithmic fidelity. Although the

second goal - regarding structure - may seem the most removed from this concept, fair

verification of algorithmic fidelity first requires that an LLM be capable of giving a re-

sponse in the correct format. Indeed, in many cases it’s not possible to complete a study

using LLM simulation if the LLM is incapable of consistently following format instruc-

tions. Research pursuing the third goal is perhaps the most clearly based on a need for

high algorithmic fidelity. Each of these goals, then, must first begin with a careful pur-

suit of algorithmic fidelity, albeit using different applications at times and facing different

hurdles.

In both studies reported in this manuscript, our goal is LLM simulation or represen-

tation of group-based attitudes. While the groups in our studies are variously defined by

race, gender, religion, political party, sexuality, fashion choice or favorite color, the core

content in both studies is stereotypes and attitudes about social groups. This choice was

intentional - this is a domain where scholars have concerns about what LLMs contain,

what types of biases are contained in the text they generate, and the effect of alignment

on these outcomes. From the perspective of many social scientists, there are also substan-

tive reasons to prefer our test topic choice: many, if not most, attitudes people possess

connect to group-based identities and status (Blumer, 1958; Sherif et al., 1961; Kinder and

Kam, 2009; Achen and Bartels, 2016). Still, we recognize that the specific demonstrations

we have made here highlighting the impact of model choice on silicon sampling have

the most obvious direct application to measuring and studying group-based views; re-

searchers studying beliefs or actions orthogonal to such identities and attitudes ought to

confirm these patterns in the measures and domains central to their concerns. However,

we expect that the patterns we identify here across base and aligned models should have
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similar implications for the use of LLMs as text annotators, summarizers of documents,

interactive agents, tools in survey construction, and more. For example, it is plausible

that some alignment processes will prevent an LLM from summarizing or classifying text

content with objectionable views or a high degree of negativity. We recommend that re-

searchers using LLMs in any capacity consider the effects of alignment, particularly how

goals of being helpful, honest, and harmless might shape responses in completion of the

task they want to perform, prompts they want to use, and the objectives they have for

LLMs in data generation and analysis.

What, if anything, do these results suggest about the broader approach of silicon sam-

pling as a method of using LLMs to study individuals’ attitudes and behaviors? The

results shown in the previous sections - particularly those in Figures 6 and 7 - show only

limited correspondence between human responses and simulated attitudes. We acknowl-

edge these gaps, but at the same time, urge restraint towards over-interpreting them in

the context of LLMs broadly. These results show only limited support for the method of

silicon sampling using these particular LLMs (in both their aligned and base versions)

with the particular prompts we describe earlier in this paper. That does not necessarily imply,

however, that a different prompting strategy with different models would not generate a

better match between silicon and human responses. We chose the particular models and

prompts used in this paper to maximize our ability to robustly speak to the role of align-

ment, which necessarily constrains our ability to talk about the best models and prompts

for silicon sampling. It may be that the best models for silicon sampling - perhaps the

OpenAI or Anthropic models - also show dramatic alignment effects. Given the closed

nature of those models and the unavailability of the necessary unaligned versions of their

LLMs, however, we cannot conduct this research with those particular models. Addi-

tionally, creative new methods for building silicon personas may continue to increase the

feasibility and reliability of silicon sampling approaches (Park et al., 2024; Kim and Lee,

2024) As such, we urge caution against making sweeping claims about silicon sampling
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in general given that our results may or may not generalize to these other approaches and

contexts.

Conclusion

A number of important implications emerge from these findings about alignment for

those using LLMs in social science research; we mention three here. The first, and per-

haps most critical, is the necessity for researchers to understand the LLMs they wish to

use. This does not mean that everyone hoping to leverage generative AI must have a

detailed or mathematically complex understanding of LLMs. Instead, we suggest that it

is critical that social scientists know the basics of how LLMs are constructed, the critical

role of prompting and prompt engineering when working with LLMs, and the kinds of

alignment affecting the specific LLM they plan to use. There is no "best" LLM or LLM

family for every application and objective. Instead, researchers should consider how well

suited a particular model is for the task at hand. Answering this question requires users

to consider the types of factors we have highlighted in this manuscript.

Second, our results suggest that when selecting and assessing LLMs, researchers should

collectively develop a set of benchmarks and guidelines for evaluating the performance

of generative AI tools. Here, we have adapted the criteria proposed by early work on sil-

icon sampling by Argyle et al. (2023a). However, our objective is not to defend these four

particular standards, but rather to suggest that all researchers need some set of criteria to

evaluate whether a model reliably performs a task before using the model to simulate hu-

man attitudes or perform any other research task. We recommend a revitalized discussion

of such criteria or standards, how they might vary across tasks and contexts, and how to

evaluate whether models meet those standards in practice. Until common standards and

best practices are established, each study using LLMs should provide systematic, thor-

ough, and direct evidence that the LLM, in the conditions and context of a particular

study, performs the research task as expected and required.
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In this regard, social scientists can learn from computer science: computer scientists

engage in robust discussion and cooperation to establish performance benchmarks. One

such collaboration - BIG bench - includes over 200 benchmarks, a process for submit-

ting new standards, and a condensed leaderboard of tasks to evaluate LLM performance

(Srivastava, 2023). We suggest social scientists do something similar, creating forums to

propose, discuss, and evaluate benchmarks for LLM integration in social science. The

sheer scale of LLMs means that adequately building, training, and benchmarking social-

science oriented LLMs will likely require intentional efforts to coordinate across research

teams and universities. This can be done through conference meetings, working groups,

special issues of journals, task groups as parts of major professional organizations, and

formal deliberations around standards. Benchmarking standards could include measures

of how well different LLMs perform specific survey-related tasks, including: tracking

shifts in attitudes (as opposed to only considering one moment in time), recovering treat-

ment effects from experiments, evaluating variation according to differences in prompts,

or representing various subpopulations of interest for different areas of research. Ulti-

mately, a resource like BIG bench that presents existing standards and tests and allows

people to propose new benchmarks offers significant promise to the burgeoning use of

LLMs across the social sciences.

Finally, our results suggest that models generated and aligned for other purposes are

unlikely to ever be perfectly calibrated to the tasks required by social scientists. As such,

social scientists might consider more active engagement in the model creation and align-

ment process to produce LLMs more geared towards their specific research goals. At

present, researchers rely on use of models trained and aligned by organizations that have

their own primary objectives. A custom-designed LLM for social science might be the

most effective solution, but given current technical requirements, it is likely not possi-

ble without a coordinated consortia of researchers and institutions. While the techni-

cal and computing resources needed for creating an LLM from scratch are substantial,
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computationally-minded social scientists may be able to pursue intermediate steps, in-

cluding refinement of existing open-source models or participation in the alignment pro-

cesses of closed-source models. Numerous customized versions of open-source models

already exist; these include models fine-tuned to have different linguistic capacities, excel

at specific tasks, have reduced computing requirements, process types of data (such as

images), and so forth. One example of a repository of some of these models can be found

here. We encourage social scientists to actively participate in model creation, fine-tuning,

and refinement with the objective of developing LLMs well-suited to the kinds of tasks

that social scientists value. Some new work has just begun to do this in the domain of

silicon sampling (Marcel Binz, 2024); others could develop similar versions of models for

other ends such as to code texts of a specific format or to contain a contextual knowledge

of a specific academic literature.

Addressing these last two suggestions extends beyond the role of a single paper or

even a single research team. As social scientists take up these tasks, we encourage col-

laboration across research groups, institutions, and fields of study to generate robust dis-

cussion, inclusive participation, and thorough principles acceptable to a wide range of

stakeholders and researchers.

In these pursuits, we urge continued focus on the ethical considerations that arise from

LLM use in social science. While the particular methods proposed in this paper do not

directly impact human participants (limiting concerns in this case about direct efforts at

misinformation, persuasion, etc.), we encourage researchers using these method to im-

prove silicon sampling to evaluate the degree to which their use of LLMs compounds

group-level stereotypes, prejudice, inequities, and discrimination. Further, more thought

and discussion should be given to the environmental and energy impact of efforts to em-

ploy and improve LLMs and the implications of these processes for responsible use of

generative AI (Shoup, 2024; de Bolle, 2024; Ren and Wierman, 2024).

We believe that LLMs, properly employed, have almost unimaginable potential to
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transform social science. However, we fear that the confident language of LLMs can at

times give researchers false confidence that an LLM is "getting it right," discouraging

careful evaluation of LLM model choice and output. Our research experience working

with LLMs consistently reinforces the centrality of human judgment and decision-making

in AI research. Researcher expertise is needed to design theoretically-meaningful tests,

adjust the behavior of the model, determine when to set aside a particular application,

and evaluate the success of an LLM. None of this would be possible without human

input, knowledge, and guidance. LLM research requires more, not less, of this type of

involvement.

Data and Code Availability Statement:

Replication materials including data and code are available at the following url:

https://github.com/AlexMLyman/Replication-Materials-for-Balancing-Large

-Language-Model-Alignment-and-Algorithmic-Fidelity
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